主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2020, Vol. 39 ›› Issue (12): 1747-1750.

• • 上一篇    下一篇

基于人工智能的轻量级模型对烟雾检测研究及应用

陈朝晖,陈之宇   

  1. 深圳市住房和建设局,广东深圳518028
  • 出版日期:2020-12-15 发布日期:2020-12-15
  • 作者简介:陈朝晖(1973-),男,深圳市住房和建设局建设工程消防验收处处长、中级工程师,主要从事防火监督及工程消防验收工作,深圳市福田区甘泉路设计大厦5楼,518028。

Research and application of residual network model based on artificial intelligence for smoke detection

CHEN Zhao-hui, CHEN Zhi-yu   

  1. Shenzhen Municipal Bureau of Housing and Urban-Rural Development, Guangdong, Shenzhen 610067, China  

  • Online:2020-12-15 Published:2020-12-15

摘要:

传统应用在便携设备上的火灾探测系统占用内存非常巨大,传感器易受环境的影响,导致检测精度不高。针对这一问题,提出了一个内存占用率小、性能优的火灾探测系统。利用FireNet神经网络嵌入到便携式硬件产品中,在多种火灾数据集上进行测试,测试效果表明,该系统相较其他传统方法,在精度和速度上都有明显提升。

关键词: 消防, 神经网络, 嵌入式系统, 烟雾检测

Abstract: The traditional fire detection system used on portable devices consumes a lot of memory, is vulnerable to the environment, and the accuracy needs to be improved. We propose a fire detection system with a small memory footprint and excellent performance. Using the FireNet neural network we designed to embed in portable hardware products, we tested it on a public data set. Compared with other traditional methods, the test results have significantly improved the accuracy and speed.

Key words: fire Protection, neural networks, embedded systems, smoke detection