消防科学与技术 ›› 2020, Vol. 39 ›› Issue (12): 1713-1717.
尹建平1,3,曾美琳2,3,徐文磊3,熊强强3,李柯3
YIN Jian-ping1,3, ZENG Mei-lin2,3, XU Wen-lei3, XIONG Qiang-qiang1,3, LI Ke1,3
摘要:
为解决传统森林火灾检测误报率高、响应速度慢等问题,提出了以无人机作为探测平台,地面站作为火灾识别系统,实现森林火灾的自动探测、识别和定位。开发了六旋翼无人机平台,通过所搭载的红外摄像机和机载计算机获取森林火灾现场图像并实时传回地面。利用地面站对所接收到的火灾图像进行处理,实现对森林火场的在线监测。在森林火灾识别算法方面,提出了O_YOLOv3 算法,采用Darknet 框架进行网络训练,使用K_means 方法自动生成锚点,有效提高火灾识别精度与响应速度。将O_YOLOv3 算法与其他几种算法进行对比实验验证本文算法的有效性。实验结果表明:O_YOLOv3 火灾识别算法能够快速、精准识别森林火灾;所研制的基于O_YOLOv3 的无人机森林火灾探测系统能够用于实际森林火灾探测。