主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2020, Vol. 39 ›› Issue (10): 1425-1429.

• • 上一篇    下一篇

云南省森林火灾时空聚集性研究

魏建珩1,李智1,马泽南1,王何晨阳1,王秋华1,舒立福2,杨玉钰1,高仲亮1   

  1. 1. 西南林业大学土木工程学院,云南昆明650224;2. 中国林科院森林生态环境与保护研究所,北京100091
  • 出版日期:2020-10-15 发布日期:2020-10-15
  • 作者简介:魏建珩(1996-),女,重庆合川人,西南林业大学土木工程学院硕士研究生,主要从事林火管理研究,云南省昆明市白龙寺300 号,650224。
  • 基金资助:
    国家自然科学基金资助(31860214,301660210,31960318);西南林业大学科研启动基金项目(111437)

Study on spatial and temporal aggregation of forest fire in Yunnan province

WEI Jian-heng1, Li Zhi1, MA Ze-nan1,WANG He-chen-yang1, WANG Qiu-hua1,SHU Li-fu2, YANG Yu-yu1, GAO Zhong-liang1   

  1. 1.Civil Engineering College, Southwest Forestry University,Yunnan Kunming 650224, China;2.Institute of Forest Ecological Environment and Protection, CAF, Beijing 100091, China
  • Online:2020-10-15 Published:2020-10-15
  • Contact: 高仲亮(1981-),西南林业大学土木工程学院讲师。

摘要: 基于云南省1990-2017 年的火灾数据和气象数据,应用SaTScan 9.4 进行林火空间聚集性分析,并通过ARMA 模型预测研究区2020-2025 年森林火灾发生次数。结论表明:时间尺度上云南省林火次数随年份增加而逐渐减少,云南省林火主要集中在1-5 月;空间尺度上云南省森林火灾主要聚集在中部、西北部、西南部地区;ARMA 预测模型得出2020-2025 年云南省森林火灾多于2017 年火灾次数,但总体呈下降趋势。通过该研究可以更好地掌握林火聚集性规律,为森林管理部门防控工作提供一定的理论支持。

关键词: 森林火灾, 聚集性, 时空分布, SaTScan, ARMA

Abstract: Based on the forest fire and meteorological data of Yunnan province from 1990 to 2017, the spatial aggregation analysis of forest fire was completed using SaTScan 9.4, the ARMA model was used to predict the frequency of forest fires from 2020 to 2025 in the region. The results showed that: At the time scale, the frequency of forest fires in Yunnan province decreased with the increase of year and was concentrated from January to May; On the spatial scale, forest fires mainly gather in central, northwest, and southwest regions in Yunnan province;Based on the ARMA model, there were more fires in Yunnan province from 2020 to 2025 than in 2017, but the number showed a decline trend.The study can help mastering the characteristics of the forest fire clustering, and provide theoretical support for the prevention and control work of the forest management department.

Key words: forest fire, aggregation, spatial and temporal distribution;SaTScan, ARMA model