消防科学与技术 ›› 2020, Vol. 39 ›› Issue (10): 1345-1349.
高建丰1,2,王焱1,金卷华1
GAO Jian-feng1,2,WANG Yan1,JIN Juan-hua1
摘要: 为了进一步提高油库消防系统的安全性,针对其火灾报警信息系统进行了改进,构建基于量子粒子群算法优化BP神经网络的火灾智能预警算法,以温度、烟雾浓度以及CO 浓度数据作为神经网络的输入,以无火、明火以及阴燃火的概率作为神经网络的输出。使用量子粒子群算法优化BP 神经网络运行中随机产生的权值和阈值,加快神经网络收敛到期望误差的速度,增强全局搜索能力。通过MATLAB 软件对智能火灾预警算法的模型进行仿真,模型输出的火情概率与实际值基本吻合。设计了多传感器数据采集设备,获取火灾现场数据,输入网络模型,能够有效识别明火、阴燃火和无火情况,验证了该算法可提高消防预警系统的准确性。