主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (3): 362-368.

• • 上一篇    下一篇

基于水力模型与系统动力学的地铁多股人流疏散模型

刘莉娜1, 张世勇2, 刘茜2   

  1. (1.中国矿业大学工程咨询研究院(江苏)有限公司,江苏 徐州 221008; 2.中国矿业大学 安全工程学院,江苏 徐州 221116)
  • 收稿日期:2025-01-28 修回日期:2025-02-15 出版日期:2025-03-15 发布日期:2025-03-15
  • 作者简介:刘莉娜,中国矿业大学工程咨询研究院(江苏)有限公司工程师,主要从事应急管理、法规政策规划研究,江苏省徐州市中国矿业大学文昌校区,221008,1328031161@qq.com。

A multi-stream pedestrian evacuation model for subways based on hydraulic models and system dynamics

Liu Lina1, Zhang Shiyong2, Liu Qian2   

  1. (1. CUMT Engineering Consulting & Research Institute Co., Ltd. (Jiangsu), Xuzhou Jiangsu 221008, China; 2. College of Safety Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China)
  • Received:2025-01-28 Revised:2025-02-15 Online:2025-03-15 Published:2025-03-15

摘要: 城市地铁内存在多股人流汇聚情况,紧急情况下多股人流汇聚会导致疏散困难。本文基于水力模型与系统动力学理论,构建了地铁多股人流疏散模型,并结合具体案例揭示了考虑商业区人员通过站厅疏散的极端不利情况下,多股人流汇聚处出口瓶颈的人员疏散规律。研究结果表明,多股人流交汇于出口瓶颈时,疏散效率呈现“由快到慢再加快”的变化趋势;随着人数增加,安全出口的充分利用时间占比从74.02%下降至64.78%,即安全出口充分利用时间随人数的增加而减少;当站厅安全出口的比流量受某区域人员汇入影响时,该区域疏散完成后,出口比流量会短暂下降,反之,比流量维持稳定;较Pathfinder仿真模拟,系统动力学模型更贴近实际疏散场景,且具有更高的模拟效率。

关键词: 地铁疏散, 多股人流, 水力模型, 系统动力学方法

Abstract: In urban subway systems, the convergence of multiple pedestrian flows can lead to evacuation difficulties during emergencies. This study constructs a subway multi-stream pedestrian evacuation model based on the hydraulic model and System Dynamics (SD) theory. By combining specific case studies, it reveals the evacuation patterns at exit bottlenecks where multiple pedestrian flows converge under extreme unfavorable conditions, considering the evacuation of commercial area personnel through the station concourse. The findings reveal that: When multiple pedestrian flows converge at exit bottlenecks, evacuation efficiency demonstrates a "fast-slow-fast" trend; As occupant numbers increase, the utilization efficiency duration of emergency exits decreases from 74.02% to 64.78%, indicating reduced effective utilization time with higher crowd density; The specific flow rate at concourse exits experiences transient reduction when influenced by converging pedestrian streams from specific zones, whereas it remains stable otherwise; Compared with Pathfinder simulations, the System Dynamics model demonstrates closer alignment with actual evacuation scenarios and superior computational efficiency.

Key words: subway evacuation, multi-stream flow, hydraulic model, system dynamics method