主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (2): 190-195.

• • 上一篇    下一篇

化工罐区多灾种耦合动态概率分析

曾涛1,2, 魏利军1,2, 多英全1,2, 王海顺1,2,3, 陈思凝1,2   

  1. (1.中国安全生产科学研究院,北京 100012; 2.重大危险源与化工园区系统安全应急管理重点实验室,北京 100012; 3.中国矿业大学(北京) 应急管理与安全工程学院,北京 100083)
  • 收稿日期:2024-10-11 修回日期:2024-10-22 出版日期:2025-02-15 发布日期:2025-02-15
  • 作者简介:曾 涛,中国安全生产科学研究院博士后,工程师,主要从事过程系统安全与风险防控技术方面的研究,北京市朝阳区北苑路32号院甲1号楼安全大厦,100012。
  • 基金资助:
    应急管理部重点科技计划项目(2024EMST060602);国家重点研发计划项目(2023YFC3008800)

Dynamic probability analysis for coupled multi-hazard in chemical tank farm

Zeng Tao1,2, Wei Lijun1,2, Duo Yingquan1,2, Wang Haishun1,2,3, Chen Sining1,2   

  1. (1. China Academy of Safety Science and Technology, Beijing 100012, China; 2. Key Laboratory of Major Hazard and Chemical Industry Park System Safety, Ministry of Emergency Management, Beijing 100012, China; 3. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
  • Received:2024-10-11 Revised:2024-10-22 Online:2025-02-15 Published:2025-02-15

摘要: 为了实现化工区域全面风险评估,突破多灾种耦合复杂场景时空演化不确定性的表征难题,对化工罐区多灾种耦合风险因素、演化规律、动态概率分析方法进行研究。首先,从设备及罐区层面深入剖析化工罐区灾害系统及相关的风险因素。其次,以多层级Bow-Tie结构描述化工罐区多灾种耦合链式演化规律,为事故演化网络构建提供理论基础。最后,以动态贝叶斯网络为动态不确定性量化工具,建立了化工罐区多灾种耦合动态概率分析方法。案例分析结果表明:自然灾害因素将导致储罐失效概率上升,通过动态概率曲线可识别事故演化的关键单元。该方法可为化工区域耦合灾害风险分析与应急管理提供数据支撑。

关键词: 化工罐区, 多灾种耦合, 时空演化, 动态贝叶斯网络, 动态概率

Abstract: To support the comprehensive risk assessment of chemical industrial areas and address the difficulties of quantifying uncertainties related to complex spatiotemporal evolution of coupled multi-hazard, a systematic study of risk factors, evolution laws, and dynamic probability analysis method of coupled multi-hazard in the chemical tank farm is carried out. First, the disaster system in the chemical tank farm and related risk factors are explored from the perspective of equipment and tank farm. Second, the evolution pattern of coupled multiple hazards in the chemical tank farm is depicted using multi-level Bow-Tie structures, providing theoretical basis for the establishment of accident evolution network. Finally, the dynamic Bayesian network is used as a tool to quantify dynamic uncertainties, and a dynamic probability analysis method for coupled multi-hazard in the chemical tank farm is developed. The results of case study show that natural hazard factors could lead to the rise of tank failure probability. Moreover, the key unit for accident evolution can be identified from the curves of dynamic probability. The developed method could provide data support for risk analysis and emergency management of coupled disasters in any chemical industrial area.

Key words: chemical tank farm, coupled multi-hazard, spatiotemporal evolution, dynamic Bayesian network, dynamic probability