主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (11): 1596-1602.

• • 上一篇    下一篇

基于改进CycleGAN的林火图像烟雾滤除算法研究

李海顺, 李兴东   

  1. (东北林业大学 机电工程学院,黑龙江 哈尔滨 150040)
  • 收稿日期:2023-12-20 修回日期:2024-02-27 出版日期:2024-11-15 发布日期:2024-11-15
  • 作者简介:李海顺(1997- ),男,山东济宁人,东北林业大学机电工程学院硕士研究生,主要从事火行为精准智能辨识方面的研究,黑龙江省哈尔滨市香坊区和兴路26号,150040。
  • 基金资助:
    基金项目:国家重点研发计划项目(2022YFC3003002)

Research on smoke filtering algorithm of forest fire images based on improved CycleGAN

Li Haishun, Li Xingdong   

  1. (College of Mechanical and Electrical Engineering, Northeast Forestry University, Heilongjiang Harbin 150040, China)
  • Received:2023-12-20 Revised:2024-02-27 Online:2024-11-15 Published:2024-11-15

摘要: 森林火灾现场的烟雾易遮挡火场要素信息,从而严重干扰火点定位等遥感技术手段的实施。本文提出了一种用于火场非均匀烟雾滤除的改进CycleGAN网络算法。该算法组合小波变换分支与包含Res2Net模块、注意力模块的知识蒸馏分支形成生成器,引入PatchGAN网络作为判别器,同时在CycleGAN基础上增加了感知损失和映射损失函数。该算法实现了火场细节的恢复,可有效去除林火图像伪影。为了验证模型有效性,基于国际典型数据集NH-HAZE及中尺度点烧试验数据集,对比了该算法与现有去雾算法的效果。结果表明:该算法去雾效果对比现有模型有了显著改进(与第二名相比,PSNR、SSIM值分别至少提高了2.40 dB和2.07 dB,0.02和0.15),能够提升森林火灾遥感监测质量,可以为森林火灾消防决策提供更丰富、有价值的火场关键信息。

关键词: 森林火灾, 非均匀烟雾, 烟雾滤除, 改进CycleGAN网络, 小波变换, 知识蒸馏

Abstract: Smoke at the forest fire scene is prone to obscure the information of fire field elements, thus seriously interfering with the implementation of remote sensing technology tools such as fire point localization. In this paper, an improved CycleGAN network algorithm for non-homogeneous smoke filtering in fire scene is proposed. The algorithm combines a wavelet transform branch with a knowledge distillation branch containing Res2Net module and attention module to form a generator, introduces a PatchGAN network as a discriminator, and at the same time adds perceptual loss and mapping loss functions on the basis of CycleGAN. The algorithm realizes the recovery of fire details and can effectively remove forest fire image artifacts. In order to verify the effectiveness of the model, the effect of the algorithm is compared with the existing de-fogging algorithms based on the international typical dataset NH-HAZE and the mesoscale point-burning experimental dataset. The results show that the algorithm's de-fogging effect is significantly improved compared with the existing model (compared with the second place, the PSNR and SSIM values are improved by at least 2.4 dB and 2.07 dB,0.02 and 0.15, respectively), which is able to improve the quality of remote sensing monitoring of forest fires, and it can provide richer and more valuable key information about the fire scene for forest fire fighting decision-making.

Key words: forest fire, non-homogeneous smoke, smoke filtering, improving CycleGAN networks, discrete wavelet transform, knowledge adaptation