主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (10): 1355-1360.

• • 上一篇    下一篇

基于拉曼光谱的锂电池热解气危险定量研究

张怡1, 张伟2   

  1. (1. 西安航空职业技术学院 航空管理工程学院,陕西 西安 710089;2. 中国民航大学 交通科学与工程学院,天津 300300)
  • 收稿日期:2024-05-08 修回日期:2024-06-28 出版日期:2024-10-15 发布日期:2024-10-15
  • 作者简介:作者简介:张 怡(1997- ),女,山西大同人,西安航空职业技术学院教师,助教,主要从事民航安全管理、民航热灾害研究,陕西省西安市阎良区迎宾大道500号,710089。
  • 基金资助:
    基金项目:国家自然科学基金(61801519);中央高校基本科研业务费中国民航大学专项(3122020048)

Quantitative study on the risk of pyrolysis gas released by lithium battery based on Raman spectroscopy

Zhang Yi1, Zhang Wei2   

  1. (1. College of Aviation Management Engineering, Xi'an Aeronautical Polytechnic Institute, Shaanxi Xi'an 710089, China;2. College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China)
  • Received:2024-05-08 Revised:2024-06-28 Online:2024-10-15 Published:2024-10-15

摘要: 为了解决传统锂离子电池热失控气体检测手段存在检测周期长、易交叉干扰等问题,系统地定量研究锂离子电池热解气体潜在危险性。提出气体拉曼光谱分析技术结合多种气体安全定量分析方法,对三元锂离子电池(以下简称锂离子电池)热解气体毒性及潜在燃爆危险性进行全面研究。通过建立的热失控特征气体预测模型,着重分析了不同荷电状态(25%、50%、75%、100%)下锂离子电池热失控气体浓度、气体生成量、爆炸极限、压力特性、爆炸严重程度变化规律,并结合实际场景评估电池火灾毒性。研究表明:拉曼光谱气体浓度定量模型可精准预测锂离子电池热失控气体浓度信息,H2、CO2和CO总浓度占热失控释放气体总量的80.31%~94.56%,最大压力、最大升压速率、爆炸指数和气体爆炸极限范围随着SOC增加呈现先减小后增大的趋势,50%SOC的锂离子电池表现出最好的气体安全性,爆炸极限范围最窄,为9.66%~25.27%,电池火灾具有灾难性毒性。

关键词: 拉曼光谱, 锂离子电池, 热失控, 多组分特征气体分析, 气体危险性定量分析

Abstract: In order to solve the problems such as long detection period and easy cross interference in traditional detection methods of thermal runaway gas of lithium ion batteries, the potential risk of pyrolysis gas of lithium batteries were systematically and quantitatively studied. In this paper, gas Raman spectroscopy combined with a variety of gas safety quantitative analysis methods was proposed to comprehensively study the toxicity and potential explosion risk of ternary lithium-ion battery pyrolysis gas. Based on the established thermal runaway characteristic gas prediction model, the variation law of thermal runaway gas concentration, gas generation, explosion limit, pressure characteristics and explosion severity of lithium-ion battery under different SOC (25%, 50%, 75%, 100%) was emphatically analyzed, and the battery fire toxicity was evaluated in combination with the actual scenario. The research shows that: The Raman spectral gas concentration quantitative model can accurately predict the thermal runaway gas concentration information of lithium-ion batteries. H2, CO2 and CO concentrations account for 80.31%~94.56% of the total thermal runaway gas released. The maximum pressure, maximum pressure boost rate, explosion index and gas explosion limit range show a trend of decreasing first and then increasing with the increase of SOC. Lithium-ion batteries with 50%SOC show the best gas safety, with the narrowest explosion limit range of 9.66% to 25.27%, and battery fires are disastrously toxic.

Key words: Raman spectrum, lithium-ion batteries, thermal runaway, multi-component characteristic gas analysis, quantitative analysis of gas risk