主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (8): 1066-1071.

• • 上一篇    下一篇

不同充电条件下三元锂电池过充热失控研究

彭伟1,2, 巩耀1, 谢奇1, 任俊生1   

  1. (1. 安徽理工大学 安全科学与工程学院,安徽 淮南 232000;2. 安徽理工大学 公共安全与应急管理学院,安徽 合肥 231131)
  • 收稿日期:2024-03-06 修回日期:2024-05-10 出版日期:2024-08-15 发布日期:2024-08-15
  • 作者简介:彭 伟(1981- ),男,安徽淮南人,安徽理工大学安全科学与工程学院教授,主要从事火灾防治研究,安徽省淮南市田家庵区泰丰大街168号,232000,weapon0818@163.com。
  • 基金资助:
    基金项目:安徽理工大学2023年研究生创新基金项目(2023CX2024)

Study on thermal runaway of ternary lithium battery overcharge under different charging conditions

Peng Wei1, 2, Gong Yao1, Xie Qi1, Ren Junsheng1   

  1. (1. School of Safety and Engineering, Anhui University of Science and Technology, Anhui Huainan 232000, China; 2. School of Public Safety and Emergency Management, Anhui University of Science and Technology, Anhui Hefei 231131, China)
  • Received:2024-03-06 Revised:2024-05-10 Online:2024-08-15 Published:2024-08-15

摘要: 为了研究充电倍率以及充电倍率的调整方式对过充条件下三元锂电池热失控的影响,分别以0.5C、1.0C、1.5C充电倍率将锂电池过充至热失控。此外,以0.5C充至电池表面温度不再上升时,分别以0.5C和0.07C的幅度逐步调高充电倍率,直至发生热失控。结果表明:以0.5C过充时,在短时间内不会发生热失控;以1.0C和1.5C过充时,均会发生热失控,且1.5C下热失控所需时间更短,热失控的危害更大。相比于采用0.5C幅度提高充电倍率的调节方式,采用0.07C幅度的调节方式会显著提高临界充电倍率,从而降低热失控的风险;以0.07C逐步提高充电倍率的过程中存在一个拐点倍率,当充电倍率小于此拐点倍率时,充电倍率与其对应的峰值温度呈线性关系,而当充电倍率大于拐点倍率后,继续提高充电倍率会导致热失控;先以0.5C过充,而后提高充电倍率导致热失控,其热失控危害远低于1.0C和1.5C过充的危害。因此,应当在符合实际需求的前提下采取较低的充电倍率。如需增加充电倍率,采取缓慢增加的方式有助于降低电池发生热失控的风险。

关键词: 锂电池, 热失控, 充电倍率, 过热, 过充

Abstract: To investigate the effects of charging rates and their adjustments on thermal runaway in ternary lithium batteries under overcharging conditions, the batteries were overcharged to thermal runaway at rates of 0.5C, 1.0C, and 1.5C, respectively. Additionally, the charging rate was gradually increased from 0.5C to the point where the battery surface temperature no longer rose, using increments of 0.5C and 0.07C until thermal runaway occurred. Results indicate that overcharging at 0.5C does not lead to thermal runaway in a short time span; however, at 1.0C and 1.5C, thermal runaway occurs, with a shorter time to thermal runaway and greater severity at 1.5C. Compared to the 0.5C increment method, increasing the charging rate by 0.07C significantly raises the critical charging rate, reducing the risk of thermal runaway. During the gradual increase with 0.07C, there is a turning point rate: below this rate, the charging rate correlates linearly with the peak temperature; above it, further increases lead to thermal runaway. Initiating with 0.5C overcharging followed by rate increments results in lower thermal runaway risks compared to direct 1.0C and 1.5C overcharging. Therefore, lower charging rates should be adopted under practical needs, and if rate increases are necessary, gradual increments help mitigate thermal runaway risks.

Key words: lithium battery, thermal runaway, charge multiplier, overheat, overcharge