主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (5): 687-692.

• • 上一篇    下一篇

磷酸铁锂电池爆阀后热失控抑制策略及效果研究

陈书文1, 刘凯2, 宋振轩2, 吕娜伟1, 姜欣1, 金阳1   

  1. (1. 郑州大学 电气与信息工程学院,河南 郑州 450001;2. 郑州市消防救援支队, 河南 郑州450046)
  • 收稿日期:2024-02-18 修回日期:2024-04-09 出版日期:2024-05-15 发布日期:2024-05-15
  • 作者简介:陈书文(1997- ),男,河南南阳人,郑州大学电气与信息工程学院硕士研究生,主要从事储能安全技术方面的研究,河南省郑州市中原区科学大道100号,450001,17335372036@163.com。

Research on strategies and effects of thermal runaway control after the rupture of lithium iron phosphate battery safety valves

Chen Shuwen1, Liu Kai2, Song Zhenxuan2, Lv Nawei1, Jiang Xin1, Jin Yang1   

  1. (1. School of Electrical and Information Engineering, Zhengzhou University, Henan Zhengzhou 450001, China; 2. Zhengzhou Fire and Rescue Detachment, Henan Zhengzhou 450046, China)
  • Received:2024-02-18 Revised:2024-04-09 Online:2024-05-15 Published:2024-05-15

摘要: 为了研究磷酸铁锂电池爆阀后热失控的抑制效果,搭建了热失控特性检测试验平台。首先对电池热失控喷气进行阶段划分,然后对比分析了不同时机切断供电对磷酸铁锂电池热失控现象特性、温度和可燃气浓度特性的影响。结果表明:磷酸铁锂电池安全阀爆开后,存在2次喷气,时间间隔为10 s左右。当安全阀打开时,伴随少量气体的喷发,立即切断供电,内部反应随之停止,阀口并未出现第2次喷气。在第2次喷气后,电池进入完全热失控状态,若立即切断供电,电池表面温度长时间持续升高,最高温度为93 ℃。在第2次喷气2 min后再断电,电池表面温度持续升高至200 ℃,相较于第2次喷气时断电,最高温度差为107 ℃,H2、CO的最大体积分数差为7.09×10-4、3.28×10-4。如果在安全阀开启瞬间不能立刻预警及干预,有效的预警应该在第1次喷气和第2次喷气之间动作,可以控制温度的上升和可燃气体的喷射,降低火灾爆炸风险。

关键词: 锂电池, 储能安全, 热失控预警, 火灾防控, 热失控抑制

Abstract: In order to study the effect of thermal runaway suppression after the rupture of lithium iron phosphate battery safety valves, an experimental platform for detecting thermal runaway characteristics was constructed. Firstly, the thermal runaway jet of the battery was divided into stages, and then the influence of cutting off power supply at different times on the phenomenon characteristics, temperature, and combustible gas concentration characteristics of thermal runaway was compared and analyzed. The results show that after the safety valve of the lithium iron phosphate battery is opened, there are two jettings, with a time interval of about 10 s. When the safety valve opens, accompanied by a small amount of gas ejection, the power supply is immediately cut off, and the internal reaction stops accordingly, and there is no second ejection from the valve. After the second jetting, the battery enters a completely thermal runaway state. If the power is cut off immediately at this time, the surface temperature of the battery continues to rise for a long time, with the highest temperature reaching 93 °C. If the power is cut off again 2 minutes after the second jetting, the surface temperature of the battery continues to rise to 200 °C. Compared with cutting off the power during the second jetting, the maximum temperature difference is 107 °C, and the maximum differences in H2 and CO volume fraction reach 7.09×10-4 and 3.28×10-4, respectively. In response to the thermal runaway warning after the safety valve opens, effective warning and thermal runaway suppression methods should act between the first and second jettings, which can prevent the rapid rise of battery temperature, reduce the ejection of combustible gases, and reduce the risk of fire and explosion.

Key words: lithium-ion batteries, energy storage safety, thermal runaway warning, fire prevention and control;thermal runaway suppression