主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (5): 651-655.

• • 上一篇    下一篇

触觉传感技术在锂离子电池热失控预警中的应用

唐亮1, 尚文艳2, 张少禹3,4,5, 陈召凡2   

  1. (1. 中关村储能产业技术联盟,北京 100190;2. 钛深科技(深圳)有限公司,广东 深圳 518000;3. 应急管理部天津消防研究所,天津 300381;4. 工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381;5. 天津市消防安全技术重点实验室,天津 300381)
  • 收稿日期:2024-01-25 修回日期:2024-03-07 出版日期:2024-05-15 发布日期:2024-05-15
  • 作者简介:唐 亮(1985- ),男,中关村储能产业技术联盟副秘书长,工程师,硕士,主要从事储能安全与标准要求方面的研究工作,北京市海淀区中关村东路66号世纪科贸大厦B座2510,100190,liang.tang@chesa.org。
  • 基金资助:
    国家重点研发计划资助项目(2022YFE0207400)

The application of tactile sensing technology in early thermal runaway warning of lithium-ion batteries

Tang Liang1, Shang Wenyan2, Zhang Shaoyu3,4,5, Chen Zhaofan2   

  1. (1. China Energy Storage Alliance, Beijing 100190, China;2. TacSense (Shenzhen) Co. Ltd., Guangdong Shenzhen 518000, China; 3. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China; 4. Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China;5. Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China)
  • Received:2024-01-25 Revised:2024-03-07 Online:2024-05-15 Published:2024-05-15

摘要: 针对应用触觉传感技术进行储能用锂离子电池的热失控安全监控开展了研究,选取52 Ah方壳磷酸铁锂电池作为研究对象,采用加热板触发单体及模组电池热失控,并结合力、电、热等多种实时监测手段,详细剖析了单体和模组层级的热失控过程。在单体级热失控试验中,电池温度因加热板作用而逐渐升高,112 s后内部短路导致膨胀力急剧增强,比电压和温度的响应能力提前8.9 min。进一步扩展到模组级热失控试验,在触发端部电池热失控后,尤其在热蔓延导致相邻电芯热失控阶段,膨胀力在电池温度和电压尚无明显变化时出现快速增长,可较电压和温度提前约6.0 min响应热失控。试验证明,相对电池温度、电压等特征,电池膨胀力能提前预警电池热失控,引入力维度数据监控能有效提高储能用锂离子电池热失控的预警能力。

关键词: 触觉传感技术, 储能安全, 锂离子电池, 热失控, 膨胀力

Abstract: This study focuses on the research of tactile sensing technology in the safety monitoring of thermal runaway in lithium-ion batteries for energy storage applications. A 52 Ah prismatic LFP (Lithium Iron Phosphate) battery is selected as the subject of investigation. Thermal runaway in individual cells and battery modules is triggered using a heating plate, and a combination of force, electrical, and thermal real-time monitoring methods is employed to thoroughly analyze the thermal runaway processes at both the single-cell and module levels. In the single-cell thermal runaway experiment, when the internal short circuit occurs due to the gradual increase in battery temperature caused by the heating plate, the swelling force sharply increases at 112 seconds, preceding noticeable changes in voltage and temperature by 8.9 min. Further extending to the module-level thermal runaway experiment, during the phase where heat propagation leads to thermal runaway in adjacent cells after triggering the end cell, the swelling force exhibits rapid growth even before any significant temperature and voltage characteristics appear, identifying signs of thermal runaway approximately 6.0 min earlier than voltage and temperature measurements. This effectively demonstrates the importance of incorporating force dimension data monitoring in enhancing the early warning capability for thermal runaway in energy storage lithium-ion batteries.

Key words: lithium iron phosphate battery, thermal runaway propagation, heat transfer, temperature variation, voltage response, mass variation