主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (5): 634-640.

• • 上一篇    下一篇

储能用锂电池热失控可燃气体爆燃过程研究

徐艺博1, 朱艳丽1,2, 杨凯3, 张明杰3   

  1. (1. 北京理工大学 爆炸科学与安全防护全国重点实验室,北京 100081;2. 北京理工大学重庆创新中心,重庆 401120;3. 中国电力科学研究院有限公司,北京 100192)
  • 收稿日期:2023-12-07 修回日期:2024-03-14 出版日期:2024-05-15 发布日期:2024-05-15
  • 作者简介:徐艺博(1999- ),男,甘肃白银人,北京理工大学爆炸科学与安全防护全国重点实验室,硕士在读,主要从事锂电池安全性方面的研究,北京市海淀区北京理工大学中关村校区9号教学楼622办公室,100081。
  • 基金资助:
    国家电网有限公司总部科技项目(5419-202255062A-1-1-ZN)

Research on the explosive combustion process of thermal runaway combustible gas of lithium battery for energy storage

Xu Yibo1, Zhu Yanli1,2, Yang Kai3, Zhang Mingjie3   

  1. (1. National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China; 2. Chongqing Innovation Center, Beijing Institute of Technology,Chongqing 401120, China; 3. Electric Power Research Institute, Beijing 100192, China)
  • Received:2023-12-07 Revised:2024-03-14 Online:2024-05-15 Published:2024-05-15

摘要: 为了有效防控磷酸铁锂电池储能电站安全事故,评估磷酸铁锂电池热失控后逸出气体的爆炸危险性是重中之重。本文根据前期试验结果,配制不同荷电状态(SOC)磷酸铁锂电池热失控逸出可燃气体和空气不同体积比例的预混气体,开展预混气体爆燃过程研究。试验结果表明:预混气体爆炸压力随着可燃气体体积分数的增加呈现先增加后减小的变化规律,与SOC相关性不大;预混气体爆燃的最大压力pmax随着预混气体中H2、CO、CH4等可燃组分占比的增加而增大;通过20 L球爆炸极限测试试验,获得不同荷电状态电池所配制的预混气体爆炸极限;对比2种爆炸极限数值计算方法,认为勒夏特列公式适用于爆炸下限计算,绝热火焰温度法适用于爆炸上限计算;根据爆炸指数Kg可知,磷酸铁锂电池热失控气体发生爆炸事故后造成的破坏效应随着SOC的增大而增大,说明高SOC的磷酸铁锂电池极易引发火灾爆炸危险,建议采取布设监控可燃气体浓度的装置等手段防范和减轻电池潜在风险。

关键词: 可燃气体, 爆炸极限, 压力, 磷酸铁锂电池, 储能

Abstract: In order to effectively prevent and control safety accidents in lithium iron phosphate battery energy storage power stations, it is of utmost importance to evaluate the explosion risk of gases escaping from lithium iron phosphate batteries after thermal runaway. Based on the preliminary experimental results, this article prepares premixed gases with different volume ratios of combustible gases and air released from thermal runaway of lithium iron phosphate batteries at different states of charge (SOC), and conducts research on the detonation process of premixed gases. The experimental results show that the explosion pressure of premixed gas shows a pattern of first increasing and then decreasing with the increase of combustible gas volume fraction, and has little correlation with SOC; The maximum pressure pmax of premixed gas deflagration increases with the increase of the proportion of combustible components such as H2, CO, and CH4 in the premixed gas; By conducting a 20 L ball explosion limit test, the explosion limits of premixed gases prepared for batteries with different states of charge were obtained; Comparing two numerical calculation methods for explosion limits, it is believed that the Le Chatelier formula is suitable for calculating the lower explosion limit, while the adiabatic flame temperature method is suitable for calculating the upper explosion limit; According to the explosion index Kg, it can be seen that the destructive effect caused by thermal runaway gas explosion accidents in lithium iron phosphate batteries increases with the increase of SOC, indicating that high SOC lithium iron phosphate batteries are highly prone to fire and explosion hazards. It is recommended to take measures such as installing combustible gas concentration monitoring devices to prevent and reduce the potential risks of the battery.

Key words: combustible gas, explosive limit, pressure, lithium? ion phosphate batteries, energy storage