主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (4): 457-462.

• • 上一篇    下一篇

植被尺寸对导线触树高阻接地故障特性的影响研究

文嘉果1, 王棣生1, 王军1, 宁鑫2   

  1. (1. 西华大学 电气与电子信息学院,四川 成都 610039;2. 国网四川省电力公司电力科学研究院,四川 成都 610041)
  • 出版日期:2024-04-15 发布日期:2024-04-15
  • 作者简介:文嘉果(1999- ),男,西华大学电气与电子信息学院硕士研究生,主要从事高压线路故障引发森林火灾风险评估模型方面的研究,四川省成都市郫都区红光镇红光大道9999号,610039。
  • 基金资助:
    国家电网有限公司科技项目资助(52199921002U)

Analysis of the influence of vegetation size on the characteristics of high resistance ground of wire touching tree

Wen Jiaguo1, Wang Disheng1, Wang Jun1, Ning Xin2   

  1. (1. School of Electrical Engineering and Electronic Information, Xihua University, Sichuan Chengdu 610039, China;2. State Grid Sichuan Electric Power Research Institute, Sichuan Chengdu 610041, China)
  • Online:2024-04-15 Published:2024-04-15

摘要: 针对植被尺寸对导线触树高阻接地故障(THIF)特性影响规律不明确、引燃难以预测的问题,本文深入分析了THIF故障过程中引燃现象及泄漏电流的变化规律。探讨了不同植被尺寸与泄漏电流之间的关系,并研究了植被尺寸对树线接触位置电弧放电特性的影响。在此基础上,推导了植被尺寸参数与泄漏电流之间的数值关系,并建立了综合考虑植被直径和长度的明火时刻泄漏电流预测模型。研究成果可为配电线路走廊植被管理及山火防治提供重要依据。

关键词: 导线触树, 高阻接地故障, 泄漏电流, 植被尺寸, 预测模型

Abstract: In response to the unclear impact of vegetation size on the characteristics of high impedance ground fault (THIF) caused by wire tree contact and the difficulty in predicting ignition, this article deeply analyzes the ignition phenomenon and the variation of leakage current during the THIF fault process. Explored the relationship between different vegetation sizes and leakage current, and studied the influence of vegetation size on arc discharge characteristics at tree line contact positions. On this basis, the numerical relationship between vegetation size parameters and leakage current was derived, and a leakage current prediction model at open flame time was established that comprehensively considers vegetation diameter and length. The research results can provide important basis for vegetation management and mountain fire prevention in distribution line corridors.

Key words: wire contact tree, high resistance ground fault, leakage current, vegetation size, prediction model