消防科学与技术 ›› 2024, Vol. 43 ›› Issue (2): 183-188.
陈庆典1, 钟晨2, 刘慧1,3, 王晓辉1
Chen Qingdian1, Zhong Chen2, Liu Hui1,3, Wang Xiaohui1
摘要: 针对古建筑火灾检测需要快速、准确及实时的需求,建立了一个专门用于古建筑火灾检测的数据集,用于古建筑火灾检测的深度学习研究。利用CBAM注意力机制模块,结合多尺度特征融合,对FireNet网络进行改进,提出适用于古建筑火灾检测的轻量级FireNet-AMF网络,在FireNet数据集和本文构建的古建筑火灾检测数据集上验证了FireNet-AMF网络的火灾检测能力。与改进前的网络相比,FireNet-AMF网络在FireNet数据集上对火灾识别的准确率达到了95.08%,与原网络相比提高了1.17%,在本文构建的古建筑火灾检测数据集上的准确率达到了95.62%,比原网络提高了1.62%。该网络在保证轻量级的同时也保证了在古建筑火灾检测中较高的检测精度。