主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2024, Vol. 43 ›› Issue (1): 51-55.

• • 上一篇    下一篇

应用深度学习模型预测复杂平面房间内的火灾温度场

曾彦夫, 李逸舟, 黄鑫炎   

  1. (香港理工大学 建筑环境及能源工程学系,中国香港 999077)
  • 出版日期:2024-01-15 发布日期:2024-01-15
  • 作者简介:曾彦夫(1994- ),男,湖南株洲人,香港理工大学建筑环境及能源工程学系博士研究生,主要从事智慧消防和火灾模拟方面的研究,香港特别行政区九龙城区漆咸道南路181号,999077。
  • 基金资助:
    基金项目:香港UGC主题研发计划(T22-505/19-N)

Deep-learning prediction on fire-induced temperature field in complex room layouts

Zeng Yanfu, Li Yizhou, Huang Xinyan   

  1. (Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)
  • Online:2024-01-15 Published:2024-01-15

摘要: 目前火灾探测系统的设计和评估主要依赖于经验模型,虽然这些模型简化了顶棚射流的特性,却未考虑建筑结构对火灾烟气行为的影响。因此,本研究采用了一种基于UNet架构的深度学习模型,以实现对复杂平面房间内顶棚下火灾温度场的快速而准确的预测。模型的训练数据包括136种不同火灾工况的数值模拟结果,其中包含各种房间平面布局、火源位置和房间高度的变化。研究结果表明,该模型能够在数秒内准确预测任何给定房间平面设计中的火灾温度场,准确率高达88%。该研究可为复杂建筑的消防系统设计和优化提供人工智能视角的参考。

关键词: 火灾温度场, 火灾探测, 建筑防火设计, 复杂建筑平面, 智慧消防

Abstract: The current design and analysis of fire detection system are mainly based on the simplified unconfined ceiling jet model, which does not consider the effect of building structures on the smoke flow behavior. This work proposed a deep learning model based on conventional neural network (CNN) with UNet architecture which aims to provide quick and accurate prediction of the fire-induced temperature field in rooms with complex layouts. A numerical database with 136 fire scenarios was first established by considering different room layouts, fire locations and room heights. The result shows that the model can provide temperature field for a given building in seconds with an accuracy of up to 88%. This work can contribute to the safety design for buildings with complex architectural plans.

Key words: temperature field, fire detection, fire safety design, complex floorplan, deep learning