主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2023, Vol. 42 ›› Issue (12): 1663-1668.

• • 上一篇    下一篇

不确定因素耦合作用下高层住宅建筑火灾温升概率模型

张媛媛1, 张志伟1, 张国维2   

  1. (1. 中国矿业大学深圳研究院,广东 深圳518000;2. 中国矿业大学 安全工程学院,江苏 徐州221116)
  • 出版日期:2023-12-15 发布日期:2023-12-15
  • 作者简介:张媛媛(1987- ),女,黑龙江北安人,中国矿业大学深圳研究院工程师,硕士,一级注册消防工程师、注册安全工程师,主要从事建筑防火与应急救援技术研究,广东省深圳市南山区粤海街道虚拟大学园产业化基地C301,518000。
  • 基金资助:
    国家重点研发计划项目(2022YFC3090503)

Probabilistic model for temperature rise in high-rise residential buildings under action of uncertain factors

Zhang Yuanyuan1, Zhang Zhiwei1, Zhang Guowei2   

  1. (1. Shenzhen Institute, China University of Mining and Technology, Guangdong Shenzhen 518000, China; 2. School of Safety Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China)
  • Online:2023-12-15 Published:2023-12-15

摘要: 高层住宅建筑火灾温升模型对建筑防火设计、风险评估、消防救援具有重要的意义,由于建筑内部可燃物、壁面热惰性、开口因子具有一定随机性,高层住宅建筑火灾温升存在一定的不确定性。对38处城市高层住宅建筑开展了相关调研,并建立了火灾荷载密度、开口因子以及壁面热惰性的概率密度分布函数,构建了城市高层住宅建筑火灾随机场景。在此基础上,基于拉丁超立方抽样法,研究了不确定因素影响下城市高层住宅建筑火灾温升概率模型,给出了城市高层住宅发生火灾时可能的温升曲线及其概率分布,并建立了高层住宅建筑最具代表性的温升曲线。

关键词: 高层住宅, 火灾, 随机性, 概率分布, 温升规律

Abstract: The temperature rise model for high—rise residential buildings is of great significance for building fire protection design, risk assessment, and fire rescue. Due to the randomness of interior combustibles, wall thermal inertia, and opening factor, the fire temperature rise in high—rise residential buildings is uncertain. This study investigated 38 urban high—rise residential buildings, created the probability density functions of fire load density, opening factor, and wall thermal inertia, and constructed random fire scenarios for urban high—rise residential buildings. On this basis, relying on the Latin Hypercube Sampling method, this study further explored the probabilistic model for fire temperature rise in urban high—rise residential buildings under the action of uncertain factors, gave the possible temperature rise curves of fires in urban high—rise residential buildings and their probability distribution, and established the most representative temperature rise curve.

Key words: high—rise residential building, fire, randomness, probability distribution, temperature rise law