主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2023, Vol. 42 ›› Issue (12): 1656-1662.

• • 上一篇    下一篇

纵向通风对隧道内地铁列车车厢烟气温度特性的影响

彭敏1, 吴振坤1, 蒋顺2, 朱国庆1   

  1. (1. 中国矿业大学 安全工程学院,江苏 徐州 221116;2. 中国科学技术大学 火灾科学国家重点实验室,安徽 合肥 230026)
  • 出版日期:2023-12-15 发布日期:2023-12-15
  • 作者简介:彭 敏(1995- ),女,安徽宿州人,中国矿业大学安全工程学院讲师,博士,主要从城市轨道火灾安全研究,江苏省徐州市大学路1号,221116。
  • 基金资助:
    国家自然科学基金项目(52204254);江苏省自然科学基金资助项目(BK20221124);火灾科学国家重点实验室开放课题(HZ2022—KF10);中央高校基本科研业务费专项资金资助项目(2022QN1010)

Study on the effect of longitudinal ventilation on the smoke temperature characteristics of subway train fires inside tunnel

Peng Min1, Wu Zhenkun1, Jiang Shun2, Zhu Guoqing1   

  1. (1. School of Safety Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China;2. State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui Hefei 230026, China)
  • Online:2023-12-15 Published:2023-12-15

摘要: 针对地铁隧道内列车车厢所组构的双狭长受限空间,开展隧道内纵向通风对列车车厢火灾烟气温度特性影响的研究。考虑隧道内通风风速平行于列车车厢侧向开口的独特特征,研究不同纵向通风风速和热释放速率下隧道内列车车厢火灾的烟气最高温升和近火源区纵向温度分布。结果表明:由于双重受限边界的限制,先前经典的单狭长受限空间所得最高烟气温升预测模型(LI Y Z等)过低地预测了车厢顶棚下方烟气温度,特别是v'>0.9的工况;此外,由于隧道内强制风流通过车厢侧向开口对车厢火灾的独特作用机制,本文所研究工况中隧道内纵向气流对车厢烟气温度特性的影响并不显著。通过对比他人试验验证和分析,提出了列车车厢顶棚下方最高烟气温升及近火源区的经验预测模型。

关键词: 纵向通风, 地铁列车火灾, 最高温度, 温度分布, 隧道, 热释放速率, 预测模型

Abstract: This paper investigates the impact of longitudinal ventilation on the smoke temperature characteristics of subway train fires inside a double long—narrow confined space, composed of the subway train inside a tunnel. The study takes into account the ventilation direction in the tunnel, which is parallel to the lateral opening of the train compartment. The maximum temperature rise of smoke and the longitudinal temperature distribution near the fire source beneath the train ceiling are analyzed under different longitudinal ventilation velocities and heat release rates. The results indicate that the maximum smoke temperature rise predicted by the previous classical single long—narrow confined space model (Li’s model) underestimates the smoke temperature beneath the train ceiling, particularly when v'>0.9, due to the confinement of double boundaries. Furthermore, the effect of longitudinal air flow in the tunnel on the smoke temperature characteristics in the subway train is insignificant under the conditions studied in this paper, owing to the unique action mechanism of the forced air flow in the tunnel through the lateral opening of the subway train. Based on a comparative analysis of experimental data from other studies, this paper proposes empirical prediction models for the maximum smoke temperature rise and longitudinal smoke distribution beneath the train ceiling.

Key words: longitudinal ventilation, subway train fires, maximum temperature, temperature distribution, tunnel, heat release rate, prediction model