主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2023, Vol. 42 ›› Issue (10): 1328-1333.

• • 上一篇    下一篇

屋顶光伏组件火灾蔓延行为及影响因素分析研究

王玥1,2,3,4, 张网1,3,4, 吕东1,3,4, 杨明瑞1,3,4   

  1. (1. 应急管理部天津消防研究所,天津 300381;2. 天津大学 电气自动化与信息工程学院,天津 300072;3. 工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381;4. 天津市消防安全技术重点实验室,天津 300381)
  • 出版日期:2023-10-15 发布日期:2023-10-15
  • 作者简介:王 玥(1990- ),男,内蒙古包头人,应急管理部天津消防研究所助理研究员,主要从事光伏火灾防控关键技术研究,天津市南开区卫津南路110号,300381。
  • 基金资助:
    基金项目:应急管理部消防救援局重点研发项目(2022XFZD10);应急管理部天津消防研究所基科费项目(2022SJ02,2023SJ01)

Analysis and research on fire spread behavior and influencing factors of rooftop photovoltaic modules

Wang Yue1,2,3,4, Zhang Wang1,3,4, Lv Dong1,3,4, Yang Mingrui1,3,4   

  1. (1. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China; 2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; 3. Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China; 4. Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China)
  • Online:2023-10-15 Published:2023-10-15

摘要: 本文通过对比分析,给出不同因素对光伏组件火灾蔓延的影响规律,结合实体试验和模拟计算对光伏组件火灾蔓延进行理论分析。通过光伏组件火灾蔓延热通量分析可以发现,屋顶安装光伏组件遮挡反射了火焰,扩大了预热区范围和最高温度,从而加剧了光伏组件火灾蔓延,并通过实体试验分析验证了模拟计算结果。通过FDS数值模拟计算,分析了防水卷材、光伏组件遮挡、风速、屋顶坡度等单独因素的影响情况,其中防水卷材提供了预热区可燃物,光伏组件促进了火焰热量的偏转,风速和坡度扩大了预热区的范围,并增加了热流的不均匀性,从而加剧了火焰的蔓延。实体试验与模拟计算结果基本一致,存在误差是燃烧不均匀导致的,可开展更多不同类型实体试验,验证和修正模拟计算结果。

关键词: 屋顶光伏组件, 火灾蔓延, 热通量, 预热区, FDS

Abstract: In this paper, the influence rules of different factors on the fire spread of photovoltaic modules are given through comparative analysis, and the theoretical analysis of the fire spread of photovoltaic modules is carried out by combining the physical experiment and simulation calculation. Through the analysis of fire spread heat flux of photovoltaic modules, it can be found that the installation of photovoltaic modules on the roof blocks and reflects the flame, expands the range of preheating zone and the maximum temperature, and thus promotes the fire spread of photovoltaic modules. The simulation results are verified through the physical experiment analysis. The influences of waterproof coil, photovoltaic module shielding, wind speed, roof slope and other individual factors are analyzed by FDS numerical simulation calculation. The waterproof coil provided the fuel in the preheating zone, the photovoltaic module promoted the heat deflection of the flame, and the wind speed and slope expanded the scope of the preheating zone and increased the non?uniformity of heat flow, thus promoting the spread of flame. The solid experiment results are basically consistent with the simulated calculation results, and the error is caused by uneven combustion. More different types of solid experiments can be carried out to verify and correct the simulated calculation results.

Key words: roof photovoltaic modules, spread of fire, heat flux, preheating zone, FDS