主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2023, Vol. 42 ›› Issue (10): 1315-1321.

• •    下一篇

液氮对磷酸铁锂储能电池热失控的抑制效果研究

王志1, 殷波1, 于永2, 周伟2, 史波波1   

  1. (1. 中国矿业大学 安全工程学院,江苏 徐州 221116;2. 南通市消防救援支队,江苏 南通 226000)
  • 出版日期:2023-10-15 发布日期:2023-10-15
  • 作者简介:王志(1990- ),男,河南南阳人,中国矿业大学副教授,硕士生导师,主要从事火灾动力学、锂离子电池火灾安全等方面的研究,江苏省徐州市大学路1号,221116。
  • 基金资助:
    基金项目:国家自然科学基金项目(52204253);民机火灾科学与安全工程四川省重点试验室开放基金项目(MZ2023KF06);中央高校基本科研业务费项目(2022QN1009)

Suppression effect of liquid nitrogen on thermal runaway of lithium iron phosphate energy storage batteries

Wang Zhi1, Yin Bo1, Yu Yong2, Zhou Wei2, Shi Bobo1   

  1. (1. School of Safety Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China; 2. Nantong Fire and Rescue Division, Jiangsu Nantong 226000, China)
  • Online:2023-10-15 Published:2023-10-15

摘要: 为了研究液氮对磷酸铁锂储能电池热失控的抑制效果,搭建了一个抑制热失控的试验平台,通过分析不同液氮喷射时机及喷射量,研究液氮对热失控的抑制效果。此外,在进行液氮抑制热失控试验之前开展了相关空白试验,确定试验所用电池的热失控特性。结果表明:液氮对热失控具有良好的抑制效果。在安全阀打开前喷射1.2 kg液氮,能有效防止热失控,然而,在热失控初期注入1.2 kg液氮只能暂时降低温度,无法抑制热失控,但将液氮量增加到6.7 kg能成功抑制热失控,在热失控剧烈时期,喷射7.2 kg液氮能有效抑制热失控;液氮对锂离子电池热失控的冷却抑制效果随着液氮量的增加而提高,喷射8 kg液氮对锂离子电池热失控的降温效果约是喷射6.2 kg液氮的5.8倍,冷却率约是喷射6.2 kg液氮的4.95倍。但液氮的有效利用率并没有随着液氮喷射量的增大而增大。

关键词: 锂离子电池, 热失控, 液氮, 抑制效果

Abstract: To investigate the effect of liquid nitrogen (LN) on thermal runaway (TR) in lithium iron phosphate energy storage batteries, a TR suppression experimental platform was constructed. The effect of LN on TR was analyzed by varying the occasion and dose of LN injection. Prior to LN inhibition of TR, blank experiments were conducted to determine the TR characteristics of the battery used. The results demonstrate that LN effectively inhibits TR. Specifically, injecting 1.2 kg of LN before the safety valve opened can prevent TR. However, during the early stages of TR, the injection of 1.2 kg of LN only provides temporary temperature reduction and cannot inhibit TR. By increasing the LN injection dose to 6.7 kg, TR can be successfully inhibited. In the period of severe TR, injecting 7.2 kg of LN can effectively inhibit TR. Additionally, the cooling and inhibition effect of LN on TR increases with increasing LN dose. The cooling effect of 8 kg LN injection on TR of lithium?ion battery is about 5.8 times of 6.2 kg LN injection, and the cooling rate is about 4.95 times of injection of 6.2 kg LN. However, the effective utilization rate of LN did not increase with the increase in LN injection dose.

Key words: lithium?ion battery, thermal runaway, liquid nitrogen, inhibition effect