主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2022, Vol. 41 ›› Issue (4): 435-439.

• •    下一篇

强光下多尺度图像增强和蚁群算法的火焰分割

胡 燕,马宗方,温 浩   

  1. (西安建筑科技大学 信息与控制工程学院,陕西 西安 710055)
  • 出版日期:2022-04-15 发布日期:2022-04-15
  • 作者简介:胡 燕(1981-),女,河南杞县人,西安建筑科技大学高级工程师,博士,主要研究方向为模式识别和信息安全,陕西省西安市碑林区雁塔路西安建筑科技大学23号信箱,710055。
  • 基金资助:
    国家自然科学基金面上项目(71673213)

Multiscale image enhancement and flame segmentation of ant colony algorithms under strong light

HU Yan, MA Zong-fang, WEN Hao   

  1. (School of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an 710055, China)
  • Online:2022-04-15 Published:2022-04-15

摘要: 针对强光下火焰图像分割不完整的问题,提出了彩色火焰图像增强及改进蚁群算法的阈值自适应分割方法。首先对采集设备捕获的RGB图像进行基于带颜色恢复的多尺度Retinex增强,用亮度控制因子对背景像素进行亮度提升,并从3个不同尺度对原图动态增加高频信息,提高火焰局部可见性,使火焰的颜色、纹理和边缘信息更加突出;然后,为了避免蚂蚁在路径选择时的随机性,增强蚂蚁搜索效率和寻优能力,在最大类间方差法基础上,通过改进蚁群算法中信息素初始浓度、更新规则和启发函数,从单幅图像自动获取分割阈值,大大提高了算法的分割精度和速度。最后,将提出的算法在不同强光、不同场景、不同干扰下与同类算法进行了对比实验,实验结果显示:在保证分割速度的同时,平均分割准确率提高了近1.96倍。

Abstract: Aiming at the problem of incomplete flame image segmentation under low contrast, the threshold adaptive segmentation method for color flame image enhancement and the improvement of ant colony algorithm is proposed. First, the multi-scale Retinex enhancement with color recovery is designed for RGB images captured by the acquisition device. The brightness of the background pixel is raised through the brightness control factor. Adding the high-frequency information to the original image from three different scales dynamically improves the local visibility of the flame, thus making the color, texture, and edge information of the flame more prominent. Then, to avoid the randomness of ants during path selection, and enhance ant search efficiency and excellence search, based on the maximum class variance method, the segmentation threshold is automatically obtained from single images by improving the initial pheromone concentration and update rules and inspiration function in the ant colony algorithm, greatly improving the segmentation accuracy and speed. Finally, the proposed algorithm is compared with similar algorithms under different strong light, different scenes and different interference. The experimental results show that the average segmentation accuracy has improved by nearly 1.96 times while ensuring the segmentation speed.

Key words: fire protection, multi-scale Retinex, image enhancement, ant colony algorithm, maximum interclass variance method, flame segmentation