主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2022, Vol. 41 ›› Issue (2): 201-205.

• • 上一篇    下一篇

燃料覆盖率对非连续分布固体竖向火蔓延的影响

刘 向1,2,朱国庆1,2,褚天巍1,2,3,张晓锦1,2   

  1. (1.中国矿业大学 城市地下空间火灾防护江苏省高校重点实验室,江苏 徐州 221116;2.中国矿业大学 安全工程学院,江苏 徐州 221116;3.香港理工大学 屋宇设备工程学系,中国香港999077)
  • 出版日期:2022-02-15 发布日期:2022-02-15
  • 作者简介:刘 向(1998-),男,河南商丘人,中国矿业大学安全工程学院硕士研究生,主要从事火蔓延理论研究,江苏省徐州市大学路1号中国矿业大学南湖校区,221116。
  • 基金资助:
    应急管理部消防救援局科技计划项目(ZIY2000001)

Effect of fuel coverage on vertical fire spread behavior of discontinuous solid

LIU Xiang1,2, ZHU Guo-qing1,2, CHU Tian-wei1,2,3, ZHANG Xiao-jin1,2   

  1. (1. University Key Laboratory of Urban Underground Space Fire Protection, China University of Mining and Technology, Jiangsu Xuzhou 221116, China; 2. Institute of Public Safety and Fire, China University of Mining and Technology, Jiangsu Xuzhou 221116, China; 3. Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)
  • Online:2022-02-15 Published:2022-02-15

摘要: 非连续分布固体燃料是指多个固体可燃物非常靠近但被气隙隔开的状态,与连续分布燃料相比,非连续分布燃料更能够代表一些现实的火灾情况,以往的研究中较少涉及。笔者通过实验的方法分析不同燃料覆盖率下固体燃料竖直向上火焰蔓延的特点。所选用的浇筑型聚甲基丙烯酸甲酯(简称“PMMA”)材料广泛应用于高层建筑外立面中,呈现出一种非连续分布的状态。对PMMA材料在建筑外立面的应用进行合理简化,使用防火背板、钢制底座、钢制支架搭建非连续分布固体燃料PMMA竖向火蔓延实验平台,开展10%~90%不同燃料覆盖率下固体燃料竖向火蔓延实验,基于固体点燃模型和固体表面顺流火蔓延模型,将得到的数据进行对比,分析燃料覆盖率对火焰形态、火焰高度、质量损失速率、热解前锋位置和火蔓延速率等参数的影响。同时,结合以往对固体燃料竖向火蔓延行为规律的认识,得出稳定阶段火焰高度和平均质量损失速率之间的数学关系。最后通过拟合给出平均火蔓延速率与燃料覆盖率之间的预测方程,并由此预测其他工况下的火焰蔓延速率。由相应的实验工况结果可知,当燃料覆盖率处于10%及以下,火焰无法顺利地向上蔓延;当燃料覆盖率处于30%及以下时,火焰在向上蔓延的过程中,出现“火焰分裂”的现象;当燃料覆盖率为50%及以下时,热解进程出现“点燃滞后”的现象,即当热解前锋到达第一层燃料的上边缘后,第二层燃料表面需要持续吸收一段时间的热量后才能够发生热解;稳定燃烧阶段火焰高度与平均质量损失速率满足一定的正比关系;由平均火蔓延速率与燃料覆盖率之间的拟合公式可以预测出,燃料覆盖率为62.55%时将会达到最大火蔓延速率。火焰高度和质量损失速率随着燃料覆盖率的增加,由于更多的燃料参与热解,产生更多可燃气体,但同时有限的氧气会使燃烧变成通风控制状态,无法充分燃烧,因此二者之间的竞争关系使火焰高度和质量损失速率均表现出先增加后减小的趋势,并在覆盖率为60%时达到峰值。随着燃料覆盖率的增加,热解所需时间呈先减小后增大的趋势。燃料覆盖率为60%时,热解所需时间最短。燃料覆盖率在50%及以下时,由于固体表面能够接收到来自火焰体的热通量减少,需要更多的时间达到热解温度,热解进程出现明显滞后现象,热解不再连续。对于使用在建筑外立面的PMMA材料,其火蔓延行为将受到燃料覆盖率的影响,合理地设置PMMA材料的覆盖率对建筑外立面防火设计具有指导意义。

关键词: 燃料覆盖率, 非连续分布, 火蔓延, PMMA

Abstract: Discontinously distributed solid fuel refers to the state where multiple solid combustibles are very close but separated by air gap. Compared with continuously distributed fuel, discontinously distributed fuel can represent some real fire situations. However, there is little research on this in the previous research, so this paper analyzes the characteristics of vertical upward flame spread of solid fuel under different fuel coverage by experimental method. The PMMA materials selected are widely used in the facade of high-rise buildings, showing a discontinously distributed state. This paper reasonably simplifies the usage of PMMA in the facade of high-rise building, uses the fireproof back plate, steel base and steel support to build the vertical fire spread experimental platform of discontinously distributed solid fuel PMMA, and carries out the vertical fire spread experiment of solid fuel under different fuel coverage of 10% ~ 90%. Based on the solid ignition model and the solid surface downstream fire spread model, the obtained data are compared to analyze the effect of fuel coverage on flame morphology effects of flame height, mass loss rate, pyrolysis front position and fire spread rate. At the same time, combined with the previous understanding of the behavior law of solid fuel vertical fire spread, the mathematical relationship between flame height and average mass loss rate in the stable combustion stage is obtained. Finally, the prediction equation between average fire spread rate and fuel coverage is given by fitting, and the flame spread rate under other working conditions is predicted. According to the results of corresponding experimental conditions, when the fuel coverage is less than 10%, the flame cannot spread upward smoothly. When the fuel coverage is not more than 30%, the phenomenon of "flame splitting" occurs in the process of upward flame spread. When the fuel coverage is not more than 50%, the pyrolysis process appears the phenomenon of "ignition lag", that is, when the pyrolysis front reaches the upper edge of the first layer of fuel, the second layer of fuel surface needs to continuously absorb heat for a period of time before pyrolysis can occur. In the steady combustion stage, the flame height and the average mass loss rate meet a certain proportional relationship. According to the fitting formula between the average fire spread rate and fuel coverage, it can be predicted that the maximum fire spread rate will be reached when the fuel coverage is 62.55%. With the increase of fuel coverage, the flame height and mass loss rate increase first and then decrease due to the competitive relationship between them, and reach the peak when the coverage is 60%. With the increase of fuel coverage, the pyrolysis time decreased first and then increased. When the fuel coverage is 60%, the pyrolysis time is the shortest. When the fuel coverage is not more than 50%, the heat flux from the flame body can be received on the solid surface, so it takes more time to reach the pyrolysis temperature, the pyrolysis process lags obviously, and the pyrolysis is no longer continuous. For PMMA materials used in the building facade, the fire spread behavior will be affected by the fuel coverage. Reasonably setting the utilization rate of PMMA materials has guiding significance for the fire protection design of the building facade.

Key words: fuel coverage, discrete distribution, fire spread, PMMA