主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2022, Vol. 41 ›› Issue (2): 185-190.

• • 上一篇    下一篇

纵向通风与竖井自然排烟下隧道火灾烟气特性实验研究

高云骥,李智胜,罗越扬,郭瀚文   

  1. (西南交通大学 地球科学与环境工程学院,四川 成都 610031)
  • 出版日期:2022-02-15 发布日期:2022-02-15
  • 作者简介:高云骥(1989-),男,河北沧州人,西南交通大学地球科学与环境工程学院讲师,博士,主要从事地下空间火灾防控及火蔓延动力学研究,四川省成都市西南交通大学犀浦校区,610031。
  • 基金资助:
    四川省科技计划(2020YFH0045)

Experimental study on smoke characteristics of tunnel fire under effects of longitudinal ventilation and vertical shaft natural smoke exhaust

GAO Yun-ji, LI Zhi-sheng, LUO Yue-yang, GUO Han-wen   

  1. (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan Chengdu 610031, China)
  • Online:2022-02-15 Published:2022-02-15

摘要: 中国逐渐发展成为世界上隧道和地下工程最多的国 家,其长隧道数量和长度跻身世界前列。据统计,火灾中85%的 人员死亡是由热烟气造成的,目前隧道中采用较为广泛的排烟系 统有纵向排烟系统、集中排烟系统和横向排烟系统,而针对长隧道 来说,我国广泛采用的是竖井式纵向通风,因此,研究纵向通风与 竖井排烟综合效应下隧道火灾烟气流动特性及温度分布规律具有 重要意义。本文建立了1:10 缩尺寸竖井隧道模型,主隧道长度 16.5 m,宽度1.3 m,高度0.65 m;竖井通过排烟横通道与主隧道 连接,排烟横通道设置在主隧道侧面中部,尺寸为1.2 m 长、0.6 m 宽、0.4 m 高;竖井横截面为半径0.6 m 的1/4 圆,高4.6 m。在 竖井隧道模型中开展了一系列油池火实验,选取2 种方形燃烧池 (20 cm×20 cm、23 cm×23 cm)作为火源,设置2 个纵向火源位置 (位置A:火源中心线与排烟横通道中心线距离0.375 m;位置B: 火源中心线与排烟横通道中心线距离1.375 m),7 种纵向通风风 速(0,0.18,0.27,0.35,0.44,0.52,0.69 m/s),定量分析不同工 况下温度分布及烟气逆流长度。研究结果表明:当无纵向通风时, 火焰与隧道地板垂直,且呈轴对称形态;当有纵向通风时,火焰向 下游偏移,且纵向通风风速越大,火焰向下游偏移越明显;当纵向 通风风速为0 m/s 时,由于竖井的存在,火源上、下游两侧烟气温 度分布并非对称,火源下游(竖井侧)烟气温度下降速度较快,与单 洞隧道烟气温度分布明显不同;随纵向通风风速增加,烟气逆流长 度和烟气温度减小,而最大温度偏移距离整体呈增加趋势;当无量 纲纵向通风风速v′<0.19 时,主隧道最大温升△Tmax 与Q2/3/ Hef 5/3 呈正比,而当无量纲纵向通风风速v′>0.19 时,主隧道最大 温升△Tmax 与Q? /(vb1/3Hef 5/3)呈正比,但常数系数均小于Li 等预 测模型中的常数系数;竖井隧道内无量纲纵向烟气温度分布符合 Fan 和Ji 等建立的纵向温度衰减模型,衰减系数k′在1.36~1.63 范围内变化,但其值明显大于单洞隧道纵向温度衰减系数k′;另 外,当火源位于位置A 时,最大烟气温度低于火源位于位置B 时 的最大烟气温度,无量纲纵向烟气温度衰减速度慢于火源位于位 置B 时衰减速度。

关键词: 竖井隧道, 纵向通风, 竖井自然排烟, 烟气特性, 预测模型

Abstract: China has gradually developed into a country with the largest number of tunnels and underground projects in the world, and the number and length of its long tunnels rank the top in the world. According to statistics, 85% of the deaths in fires are caused by hot smoke. At present, the smoke exhaust systems widely used in the tunnel include longitudinal smoke exhaust system, centralized smoke exhaust system and horizontal smoke exhaust system. However, the combinations of vertical shaft exhaust and longitudinal ventilation are widely used for long tunnels in China. Therefore, it is of great significance to study the smoke flow characteristics and temperature distribution of tunnel fires under the combined effects of longitudinal ventilation and vertical shaft natural smoke exhaust. A 1:10 reduced scale shaft tunnel model is established, and the main tunnel is 16.5 m in length, 1.3 m in width and 0.65 m in height. The vertical shaft is connected with the main tunnel through the transverse smoke exhaust with the dimensions of 1.2 m long, 0.6 m wide and 0.4 m high, which is set in the middle of the side of the main tunnel. The vertical shaft with a cross section of a quarter circle with a radius of 0.6 m is 4.6 m in height. A series of pool fire experiments are carried out in the 1:10 reduced scale shaft tunnel model. The variables of 2 pool sizes ( 20 cm×20 cm、23 cm×23 cm ) and 2 fire source locations (position A and B: the distances between the center line of fire source and the center line of transverse smoke exhaust passage are 0.375 m and 1.375 m, respectively ) , and 7 longitudinal ventilation velocities (0, 0.18, 0.27, 0.35, 0.44, 0.52, 0.69 m/s) are considered. The temperature distribution and smoke back-layering length under different conditions are quantitatively analyzed. The results showed: for no longitudinal ventilation conditions, the flame is perpendicular to the tunnel floor and presents an axisymmetric shape. Whereas for longitudinal ventilation conditions, the flame shifts to the downstream, and the larger the longitudinal ventilation velocity, the more obvious the flame shifts to the downstream. When the longitudinal ventilation is 0 m/s, the smoke temperature distribution on the upstream and downstream of the fire source is not symmetrical due to the existence of the vertical shaft, and the smoke temperature on downstream of the fire source (shaft side) decreases faster, which is obviously different from that in single tunnel fires. With the ventilation velocity increases, the back-layering length and smoke temperature distribution decrease, while the maximum temperature drift length shows an increasing trend. When the dimensionless longitudinal ventilation velocity v′<0.19, the maximum temperature rise of the main tunnel △Tmax is proportional to Q2/3/Hef 5/3,while the maximum temperature rise of the main tunnel △Tmax is proportional to

Key words: vertical shaft tunnel, longitudinal ventilation, vertical shaft natural smoke extraction, smoke characteristics, prediction model