主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2022, Vol. 41 ›› Issue (1): 108-112.

• • 上一篇    下一篇

基于YOLOv2-Tiny的无人机火灾检测与云台跟踪研究

栗俊杰,毛鹏军,淡文慧,苏 坤   

  1. (河南科技大学 机电工程学院,河南 洛阳471003)
  • 出版日期:2022-01-15 发布日期:2022-01-15
  • 作者简介:栗俊杰(1995-),男,河南息县人,河南科技大学硕士研究生,主要从事消防无人机飞行控制系统及图形处理研究,河南省洛阳市涧西区西苑路48号,471003。

Research on UAV fire detection and PTZ tracking based on YOLOv2-Tiny

LI Jun-jie, MAO Peng-jun, DAN Wen-hui, SU Kun   

  1. (College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Henan Luoyang 471003, China)
  • Online:2022-01-15 Published:2022-01-15

关键词: 无人机;YOLOv2-Tiny;云台跟踪;K210开发板;PID

Abstract: Aiming at the limited environment of PC (Personal Computer) in the application of UAV fire detection, a method of UAV fire detection and PTZ tracking based on YOLOv2-Tiny is proposed. First, perform pre-training on the improved YOLOv2-Tiny model to obtain the optimal YOLOv2-Tiny model, and deploy the optimal YOLOv2-Tiny model on the K210 development board. Secondly, transmit the detected fire image to the cloud and transfer the fire frame. The distance parameter between the selection center and the image center is passed to the PID process to control the pan-tilt to realize real-time fire tracking. Finally, the ability of fire detection and pan-tilt tracking is verified through the actual flight of the drone. The experimental results show that compared with the YOLOv2 model, YOLOv2-Tiny has a higher detection rate on the test set, the detection rate reaches 96.66%, and the detection speed reaches 14 frame persecond. The PTZ tracking center position pixel error (CPE) is lower than 5, and the UAV attitude angle remains relatively stable during real-time detection and tracking. This research has potential in real-time fire detection.

Key words: UAV; YOLOv2-Tiny; PTZ tracking; K210 development board; PID