主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2021, Vol. 40 ›› Issue (12): 1770-1774.

• • 上一篇    下一篇

基于ISM和BN的危险品仓储系统安全风险评估

卢建锋1,王 彪2   

  1. (1.南昌工程学院 工商管理学院,江西 南昌 310029;2.江西交通职业技术学院,江西 南昌 330000)
  • 出版日期:2021-12-15 发布日期:2021-12-15
  • 作者简介:卢建锋(1983-),男,江西高安人,南昌工程学院工商管理学院讲师,博士,主要从事危险品风险管理方面的研究工作,江西省南昌市高新开发区天祥大道289号,310029。
  • 基金资助:
    国家自然科学基金青年科学基金项目(61803091)

Safety risk assessment of dangerous goods storage system based on ISM and Bayesian network

LU Jian-feng1, WANG Biao2   

  1. (1.College of Business Administration, Nanchang Institute of Technology, Jiangxi Nanchang 310029, China; 2.Jiangxi Vocational and Technical College of Communications, Jiangxi Nanchang 330000, China)
  • Online:2021-12-15 Published:2021-12-15

摘要: 为预防危险品仓储事故,有必要对危险品仓储系统做安全风险评估。为降低危险品仓储系统安全风险评估的随机性和不确定性,将解释结构模型(ISM)和贝叶斯网络(BN)方法用于安全风险定量评估。基于扎根理论进行危险品仓储系统安全风险因素识别,在此基础上得到危险品仓储系统安全风险因素体系。基于ISM模型建立危险品仓储系统安全风险贝叶斯网络模型。在此基础上应用模糊集理论构建危险品仓储系统安全风险评估模型。对所建立的危险品仓储系统安全风险评估模型进行案例应用,证明了模型的合理有效性。

关键词: 危险品仓储, 安全风险, 风险定量评估, 扎根理论, ISM, 贝叶斯网络

Abstract: In order to prevent dangerous goods storage accidents, it is necessary to evaluate the safety risk of dangerous goods storage system. In order to reduce the randomness and uncertainty of safety risk assessment of dangerous goods storage system, ISM model and Bayesian network (BN) method were used for quantitative safety risk assessment.Based on grounded theory, the safety risk factors of dangerous goods storage system are identified, and the safety risk factors system of dangerous goods storage system is obtained.Based on ISM model, the Bayesian network model of dangerous goods storage system security risk was established. Using fuzzy set theory, the safety risk assessment model of dangerous goods storage system was constructed. The case application of the safety risk assessment model of dangerous goods storage system proves that the model was reasonable and effective.

Key words: dangerous goods storage, safety risk, quantitative risk assessment, grounded theory, ISM, Bayesian network