主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2021, Vol. 40 ›› Issue (9): 1337-1340.

• • 上一篇    下一篇

基于RF-GOA-RVM的海底管道腐蚀速率预测

骆正山,杨枚桧,王小完,张新生   

  1. 西安建筑科技大学 管理学院,陕西 西安 710055
  • 出版日期:2021-09-15 发布日期:2021-09-15
  • 作者简介:骆正山(1969-),男,陕西汉中人,西安建筑科技大学管理学院教授,博士生导师,博士,主要从事系统工程理论与方法、管道风险评估理论、建模与方法、企业信息化等方面的研究,陕西省西安市碑林区雁塔路中段13号,710055。

Prediction of corrosion rate of submarine pipelines based on RF-GOA-RVM

LUO Zheng-shan, YANG Mei-hui, WANG Xiao-wan, ZHANG Xin-sheng   

  1. School of Management, Xi'an University of Architecture and Technology, Shaanxi Xi'an 710055, China
  • Online:2021-09-15 Published:2021-09-15

摘要: 针对油气管道腐蚀预测模型参数确定困难及预测精度不高等问题,提出一种基于RF-GOA-RVM的腐蚀速率预测新方法。运用随机森林(RF)筛选海底管道腐蚀影响因素,确定腐蚀主要因素;用蝗虫算法(GOA)优化相关向量机(RVM)参数,预测管道腐蚀速率。仿真实验表明:与粒子群算法-相关向量机(PSO-RVM)和RVM相比,RF-GOA-RVM模型稳定性更好,预测精度更高,可为海底管道腐蚀失效预测提供决策依据。

关键词: 相关向量机, 蝗虫优化算法, 随机森林, 海底管道, 腐蚀速率预测

Abstract: In order to solve the problems of difficult parameter determination and low prediction accuracy of submarine pipeline corrosion rate prediction model, a new corrosion rate prediction method based on RF-GOA-RVM was proposed. Random forest (RF) was used to screen the corrosive factors of submarine pipelines, and the main corrosion factors were determined; the grasshopper optimization algorithm (GOA) was used to optimize the correlation vector machine (RVM) parameters to predict the corrosion rate of the pipeline. Simulation experiments show that compared with Particle swarm optimization-correlation vector machine (PSO-RVM) and RVM, RF-GOA-RVM has better model stability and higher prediction accuracy, which can provide decision-making basis for submarine pipeline corrosion failure prediction.

Key words: relevance vector machine, grasshopper optimization algorithm, random forest, submarine pipeline, corrosion rate prediction